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Fourier space intermittency of the small-scale turbulent dynamo

S. Nazarenko, R. J. West, and O. Zaboronski
Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

~Received 19 March 2003; published 25 August 2003!

The small-scale turbulent dynamo in the high Prandtl number regime is described in terms of the one-point
Fourier space correlators. The second-order correlator of this kind is the energy spectrum and it has been
previously studied in detail. We examine the higher orderk-space correlators, which contain important infor-
mation about the phases of the magnetic wave packets and about the dominant structures of the magnetic
turbulence which cause intermittency. In particular, the fourth-order correlators contain information about the
mean-square phase difference between any two components of the magnetic field in a plane transverse to the
wave vector. This can be viewed as a measure of the magnetic field’s polarization. Examining this quantity, the
magnetic field is shown to become plane polarized in the Kazantsev-Kraichnan model at large times, corre-
sponding to a strong deviation from Gaussianity. We derive a closed equation for the generating function of the
Fourier correlators and find the large-time asymptotic solutions of these correlators at all orders. The time
scaling of these solutions implies that the magnetic field has log-normal statistics, whereas the wave number
scaling indicates that the field is dominated by intermittent fluctuations at highk.

DOI: 10.1103/PhysRevE.68.026311 PACS number~s!: 47.27.Nz, 95.30.Qd, 47.27.Eq
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I. INTRODUCTION

In some astrophysical applications, such as the interste
medium and protogalactic plasmas, the kinematic viscosit
greater than the magnetic field diffusivity by the factor 1014

to 1022 @1,2#.1 In these situations, there is a vast scaling ran
where the magnetic field has a smaller characteristic len
scale than the velocity field. The dynamo process of the
chastic stretching and amplification of the magnetic field c
be studied in this case in terms of the statistics of Lagrang
deformations@3,4#. It can be pictured as a collection of ma
netic field wave packets, each moving along a fluid parti
path and being distorted by the local strain.2 Such a regime
of smooth velocity fields is similar to the Batchelor’s regim
found in the related problem of passive scalar advect
Batchelor’s regime has a long history of study; some of
more recent advances can be found, for example, in@2,4#
~and references therein!. A common further simplification of
the problem is to assume that the local strain matrix i
Gaussian white noise process; this is commonly known
the Kazantsev-Kraichnan model@5,6#. However, this as-
sumption is not always necessary, and some results h
been shown to be universal for a broader class of stocha
flows @3#.

The first analyses of the dynamo problem were base
Fourier space@5–7#, with particular emphasis being place

1The difference in the values of these transport coefficients is
to the multicomponent nature of plasma~electrons, ions, and neu
trals!. The fact that the charged particles are ‘‘attached’’ to the m
netic fields by the Larmor rotation also means there are signific
differences in the values of these coefficients along and acros
magnetic field. Such anisotropy has been ignored in most of
literature on the subject~including this present paper! but its role in
dynamo systems deserves future study.

2The second and higher derivatives of the velocity field can
ignored in this case.
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on the second-order moment, corresponding to the en
spectrum. It was realized, however, that the Fourier sp
and coordinate space equations have a similar structure@5#.
Recent studies of the turbulence intermittency~in both the
passive scalar and dynamo problems! have focused on coor
dinate space moments of second order or higher. This
proach was motivated by a feeling that this description
more natural and can give more information than thek-space
moments@3,4,8#. As a result, the onlyk-space correlator tha
has been seriously studied to date is the energy spect
and there is no theory describing the higher Fourier sp
correlators.

In the present paper, we turn our attention back to Fou
space and consider the one-point moments of the magn
field’s Fourier transform. Although the problem under inve
tigation here is the small-scale turbulent dynamo, we wo
like to give several reasons why the description of the F
rier space moments is important and why it should be de
oped in a broader turbulence context.

~i! The presence of singular structures in turbulence
known to affect the scaling of the structure functions, t
best-known examples of this being theb and multifractal
models@9#. However, some coherent structures are singu
in Fourier space rather than in coordinate space, and th
fore can be detected by an investigation of the Fourier m
ments. A simple example of structures that are singula
Fourier space~and regular in coordinate space! is a sea of
vortex filaments in two-dimensional~2D! turbulence. The
layered pattern of the vortices in coordinate space co
sponds to a 1D curve in Fourier space.3

~ii ! To date, the only Fourier moment that has been st
ied in detail is the second-order moment that describes

e

-
nt
he
e

e

3The Fourier transform should be taken over a local box, which
large enough to fit many layers of filaments, but is smaller than
large-scale vortices in this case. This will be discussed in the n
section.
©2003 The American Physical Society11-1
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distribution of the turbulent energy over wave numbe
However, there exist other Fourier moments that have a c
physical meaning and describe important properties of
turbulence. One of these objects is related to the fourth-o
moments and has the physical meaning of the mean tu
lence polarization. It will be introduced and studied in th
paper.

~iii ! The phases of the Fourier modes can be dealt w
directly, and therefore the validity of the random phase
sumption can be examined.4

~iv! Finally, in some cases a Fourier space analysis is
only way to have a treatable problem due to the introduct
of nonlocalities, for example, via pressure or wave disp
sion. Note that the dynamo and passive scalar systems d
fit into this class of problems. However, the methods dev
oped in the present paper will be applied to the nonlo
Navier-Stokes equation5 ~which involves a pressure term! in
our next paper@10#.

II. ONE-POINT AND TWO-POINT CORRELATORS
OF FOURIER AMPLITUDES

To simplify calculations, we will use the Fourier tran
forms performed over a finite box of a size much greater t
the typical length scale of the magnetic turbulence, but m
less than the scale of the advecting velocity field. The ce
of each finite box is not fixed. The box center coordina
dependence of the Fourier transforms is a useful measu
the slow variability of the large-scale magnetic turbulence
this paper we make each box move in unison with a fl
particle, and thus any coordinate dependence is replaced
time dependence along a given fluid trajectory.

Let us consider the general two-point correlator of t
Fourier transformed magnetic field components

^Bi 1
~k1!Bi 2

~k1!•••Bi n
~k1!Bj 1

~k2!Bj 2
~k2!•••Bj n

~k2!&,
~1!

where i 1 ,i 2 , . . . ,i n and j 1 , j 2 , . . . ,j n take the values 1, 2
and 3 corresponding to the three components of the magn
field, andn is an arbitrary natural number. Here, the angu
brackets^•••& denote averaging over the random veloc
field. Let us assume that the turbulence is quasihomo
neous. That is, the correlator^Bi(x1)Bj (x2)& ~and similar!
depends onx11x2 only as slowly as the advecting stra
field. On the other hand, such correlators decay withx1
2x2 at distances much less than the box size 2L. In this case

^Bi 1
~k1!Bi 2

~k1!•••Bi n
~k1!Bj 1

~k2!Bj 2
~k2!•••Bj n

~k2!&

5^Bi 1
~k1!Bi 2

~k1!•••Bi n
~k1!Bj 1

~2k1!

3Bj 2
~2k1!•••Bj n

~2k1!& f ~k11k2!, ~2!

4This is important for nonlinear systems but not so for the sys
we consider in the present paper, where the phases trivially rem
random if they are random initially.

5Such an equation is the basis of rapid distortion theory, wh
will be developed for the case of a stochastic strain.
02631
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where f (k)5(1/Ld)P l 51
d @sin(Lkl)#/kl is the Fourier trans-

form of the filter function andd is the number of space
dimensions. Here, the appearance of the functionf is due to
translational invariance, as a consequence of which mu
point correlation functions in real space depend only on
relative coordinates of the points. We see that any two-po
correlator is fully determined by the one-point correlators

I i 1 ,i 2 , . . . ,i n ; j 1 , j 2 , . . . ,j n
~k!

5^Bi 1
~k!Bi 2

~k!•••Bi n
~k!Bj 1

~2k!

3Bj 2
~2k!•••Bj n

~2k!&. ~3!

This simple observation means we can avoid lengthy der
tions dealing with two-point objects directly, and instead c
obtain results from the one-point correlators which are the
selves far easier to deal with. Turbulence isotropy and
divergence-free condition further narrow the class of p
sible one-point~and two-point! correlator tensors we need t
consider~see, for example,@11#!, which give

I i 1 ,i 2 , . . . ,i n ; j 1 , j 2 , . . . ,j n
~k!

5(
pairs

Fs
n~k!Dl 1 ,l 2

Dl 3 ,l 4
•••Dl n21 ,l n

, ~4!

where

Di j [d i , j2
kikj

k2
, ~5!

and the summation is over the set of all possible permu
tions (l 1 ,l 2),(l 3 ,l 4), . . . ,(l n21 ,l n) of the indices i and j
from the left-hand side of Eq.~4!. For each permutation, th
index s is equal to the number of pairs~in parentheses! that
consist only ofi ’s,6 for example, (i 1 ,i 3) or (i 8 ,i 2).7 One can
see that any correlator of order 2n can be expressed in term
of N5max(s)115 int(n/2)11 independent functions
Fs

n(k). There is only one such function for the second-ord
correlators, two functions for the fourth and sixth orders, a
three functions at the eighth and tenth orders.

Instead ofFs
n(k), we can choose another set of indepe

dent functions, in particular the following set of correlator

Cs
n5^uB~k!u(2n24s)uB~k!2u2s&. ~6!

These correlators are linear combinations ofFs
n(k)’s; for

example, at the fourth order we have

C0
(2)5d~d21!F0

(2)1~d21!F1
(2) ,

C1
(2)52~d21!F0

(2)1~d21!2F1
(2) .

in

h

6There is obviously going to be the same number of pairs t
consist only ofj ’s.

7The order in such pairs is unimportant, e.g., (i 1 ,i 3) and (i 3 ,i 1)
denote the same object.
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FOURIER SPACE INTERMITTENCY OF THE SMALL- . . . PHYSICAL REVIEW E 68, 026311 ~2003!
Below, we will derive a technique that allows us to deal w
the fundamental set of correlators~6!.

III. THE MODEL

Let us start with the equation for the magnetic fie
B(x,t),

] tB1~u•“ !B5~B•“ !u1kDB, ~7!

whereu is the velocity field, which we assume has a mu
slower spatial variation than the magnetic fieldB, andk is
the magnetic diffusivity~determined by the fluid conductiv
ity!. We will make use of the previously discussed finite b
Fourier transforms. Each box has sides of lengthL which is
chosen to lie between the length scales associated withB and
u, namely,LB andLu . The box Fourier transform is define
as

B̂~k,x,t !5E
box

B~r ,t !eik•(x2r ) dr , ~8!

wherex is the coordinate of the box center. Applying th
Fourier transform to Eq.~7!, we have~with accuracy up to
the first order of the scale separation parametere5LB /Lu
!1)

] tB̂m1ui¹i B̂m5s i j ki] j B̂m1smiB̂i2kk2B̂m , ~9!

wheres i j 5¹jui is the strain matrix and the operators¹i and
] i correspond to derivatives with respect toxi and ki , re-
spectively. In considering a fluid path determined byẋ(t)
5u, and thus noting thats i j (x,t)→s i j „x(t),t… and
B̂(k,x,t)→B̂„k,x(t),t…, this equation becomes8

] tBm5s i j ki] jBm1smiBi2kk2Bm . ~10!

It should also be noted that the strains i j , taken along a fluid
path enters this equation only as a given function of time.
complete the model one has to specify this dependenc
postulate the strain statistics. In what follows we choose
strain matrix to be Gaussian such that

s i j 5VS Ai j 2
All

d
d i j D , ~11!

whereAi j is a matrix with statistically independent elemen
that are white in time,

^Ai j ~ t !Akl~0!&5d i j dkld~ t !. ~12!

This choice of strain matrix ensures incompressibility a
statistical isotropy. Indeed,

8Hereafter, we will drop the caret onB̂ because only Fourier com
ponents will be considered. Also, we will not mention explicitly th
dependence on the fluid path and simply writeB[B(k,t).
02631
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^s i j ~ t !skl~0!&5VS d ikd j l 2
1

d
d i j dklD d~ t !. ~13!

However, one must be aware that this is not the only way
satisfy the incompressibility and isotropy conditions; for e
ample,@3,4,12# have chosen

^s i j ~ t !skl~0!&5V@~d11!d ikd j l 2d i l d jk2d i j dkl#d~ t !.
~14!

More generally, there is an infinite one-parameter family
possible strains. The strain matrices that are Gaussian
white in time correspond to the Kazantsev-Kraichnan mod
a natural starting point for an analytical analysis because
its simplicity. However, it should be noted that some resu
remain universal in the case of other smooth velocity fie
found in a much wider class of statistical models@3,4,12#. In
our future work we will investigate the behavior of the Fo
rier space correlators in the case of more general statist

IV. GENERATING FUNCTION

Let us consider the following generating function:

Z~l,a,b,k!5^eluB(k)u21aB2(k)1bB̄2(k)&, ~15!

where the overbar denotes the complex conjugation. T
function allows one to obtain any of the fundamental on
point correlators~6! via differentiation with respect tol, a,
andb:

Cs
n5^uB~k!u(2n24s)uB2~k!u2s&5@]l

(2n24s)]a
s ]b

s Z#l5a5b50 .
~16!

Differentiating Eq.~15! with respect to time and using th
dynamical equation~10!, we have

Ż5ki] j^s i j E&1l^sml~B̄mBl1B̄lBm!E&12a^smlBmBlE&

12b^smlB̄mB̄lE&22kk2^@luB~k!u21aB2~k!

1bB̄2~k!#E&, ~17!

where

E5eluB(k)u21aB2(k)1bB̄2(k). ~18!

To find the correlators on the right-hand side of Eq.~17!, one
needs to make use of the Gaussianity of the strain matrixs i j
and perform a Gaussian integration by parts. We then use
whiteness of the strain field to find the response function~the
functional derivative ofBl with respect tos i j ). Finally, one
can use the statistical isotropy of the strain, so that the fi
equation involves onlyk5uku and no angular dependence
the wave vector. This derivation is discussed in more de
in the Appendix. Here, we just write the final result:
1-3
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Ż5
V

2 F S 12
1

dD k2Zkk1
1

d
~24D1d221!kZk1~2d26!DZ

14S 12
1

dDD 2Z12~l224ab!~Zab2Zll!G
22kk2DZ, ~19!

where thek, a, b, andl subscripts inZ denote differentia-
tion with respect tok, a, b, andl, respectively, and

D5l]l1a]a1b]b . ~20!

Actually, one can reduce the number of independent v
ables in this equation by taking into account thatZ depends
on a andb only in the combinationh5ab. The easiest way
to see this is to consider a Taylor series expansion ofZ from
Eq. ~15!; any term that containsa andb in a different com-
bination will be zero because of the quasihomogeneity of
turbulence. Thus, we can write

Ż5
V

2 F S 12
1

dD k2Zkk1
1

d
~24D1d221!kZk1~2d26!DZ

14S 12
1

dDD 2Z12~l224h!~Zh1hZhh2Zll!G
22kk2DZ, ~21!

where

D5l]l12h]h . ~22!

In what follows, we will restrict our consideration to the 3
case (d53), when the equation forZ reduces to

Ż5
V

3
@k2Zkk1~422D!kZk14D 2Z13~l224h!

3~Zh1hZhh2Zll!#22kk2DZ. ~23!

V. ENERGY SPECTRUM

Let us now consider the energy spectrum of the magn
turbulence, given by the second-order correlator

E~k,t !5C0
15^uB~k!u2&5@]lZ#l5h50 . ~24!

Differentiating Eq. ~23! with respect tol and taking the
result atl5h50, we have

Ė5
V

3
~k2Ekk12kEk14E!22kk2E. ~25!

This equation for the evolution of the energy spectrum w
first obtained by Kazantsev@5# and by Kraichnan and Naga
rajan@6#. Kazantsev analyzed an eigenvalue problem ass
ated with this equation, which allowed him to obtain t
growth exponents of the total magnetic energy. Numerica
the energy spectrum was studied by Kulsrud and Ander
@1#, who gave a detailed description of thek-space evolution
of this spectrum. Recently, Schekochihin, Boldyrev, a
02631
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Kulsrud @2# presented the complete solution of Eq.~25! ob-
tained by the use of Kontorovich-Lebedev transform
~KLTs!. Note that this integral transform approach has
advantage over the Kazantsev’s eigenvalue analysis in th
allows us to obtain not only the growth exponents, but a
the power-law prefactors, of the large-time asymptotic so
tions.

As they will be of use later in this presentation, let
briefly review the previous results for the energy spectr
before we discuss the higher order moments. Using the s
stitution @2#

E5e5Vt/4k21/2f~k/kd1
,t !, kdn

5A V

6nk
, ~26!

one can reduce Eq.~25! to

3

V
ḟ~p,t !5p2fpp1pfp2p2f, ~27!

wherep5k/kd1
. At scales much greater than the dissipati

one, p!1, there is a perfect conductor regime for timet
!(ln q)2 ~whereq!1 is the mean wave number of the initia
condition!. Thus, in this regime the last term in Eq.~25! can
be neglected. By changing to logarithmic coordinates an
moving frame of reference one can transform this equa
into a heat equation. Fort@1/V, the solution of this is just
the Green’s function, which gives@1,2,13,14#

f5const3t21/2e23(ln k/q)2/4Vt, ~28!

where the constant is fixed by the initial condition. This s
lution describes a spectrum with an expandingk21/2 scaling
range. Att;(ln q)2 the front of this scaling range reaches t
dissipative scales. To solve Eq.~25! in this case, we note tha
the right-hand side of this equation is just the modifi
Bessel operator, and by using the KLT one immediately
tains @2#

f~p,t !5const3E
0

`

dsssinh~ps!Kis~p!Kis~q!e2s2t,

~29!

where Kis is a MacDonald function of imaginary orde
Again, this solution is given by the Green’s function on
because the condition thatt@1/V is obviously satisfied if
q!1. For time t@(ln q)2, the function e2s2t is strongly
peaked ats50, and the integration of Eq.~29! gives

f5const3t23/2K0~p!. ~30!

One should note that, although theK0(p) shape is predicted
by Kazantsev’s eigenmode analysis@2,5,13,14#, thet23/2 fac-
tor can be obtained only by solving the full initial valu
problem. For p!1, K0(p)'2 ln p, which means that a
large times scales far larger than the dissipative one are
fected by diffusion via the logarithmic correction

E~k!;k21/2 ln~kd1
/k!. ~31!
1-4
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The energy evolution gives an important, but incomplete p
ture, of the dynamo process. In particular, it does not cap
the existence of small-scale intermittency and does not a
us to predict the type of coherent structures dominating
turbulence at large times. To deal with these issues one h
study higher order correlators. Higher one-point correlat
in coordinate space were studied in@3# and used to predic
the shape of the dominant structures. Below, we procee
study the higherk-space correlators. In particular, this w
lead to the discovery of an additional quantity of intere
corresponding to the mean polarization of the magnetic
bulence.

VI. FOURTH-ORDER CORRELATORS, TURBULENCE
POLARIZATION, AND FLATNESS

There are two independent fourth-order correlators,

S~k,t !5C0
(2)5^uB~k!u4&5@Zll#l5h50 , ~32a!

T~k,t !5C1
(2)5^uB2~k!u2&5@Zh#l5h50 . ~32b!

Differentiating Eq.~23! twice with respect tol and taking
the result atl5h50, we have

Ṡ5
V

3
~k2Skk110S16T!24kk2S. ~33!

Now, differentiating Eq.~23! with respect toh and taking the
result atl5h50, we get

Ṫ5
V

3
~k2Tkk14T112S!24kk2T. ~34!

Equations~33! and ~34! make up a complete system forS
andT and can be solved exactly in the general case. Obs
that there is a closed equation forW5S2T,

Ẇ5
V

3
~k2Wkk22W!24kk2W. ~35!

Before solving this equation, let us examine the physi
meaning ofW by writing it as

W54(
j Þ l

3

^@ Im~BjB̄l !#
2&

54(
j Þ l

3

^uBj u2uBl u2 sin2~f j2f l !&>0, ~36!

where Im denotes the imaginary part andf j andf l are the
phases of the componentsBj and Bl , respectively. We see
therefore thatW contains information not only about the am
plitudes but also about the phases of the Fourier modes
particular,W[0 corresponds to the case where all Four
components of the magnetic field are plane polarized. IfW
Þ0 then other polarizations~circular, elliptic! are present.
This is the case, for example, for a Gaussian field where
finds W5E2/2.0. On the other hand, the smallness of t
phase differences inW can be overpowered by large amp
02631
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tudes. Therefore, a better measure of the mean polariza
would be a normalizedW, for example,

P5W/S. ~37!

Defined in this way, the mean turbulence polarization is
example of an important physical quantity that can be
tained from the one-point Fourier correlators, and that is
available from the~one-point or two-point! coordinate space
correlators.

In the perfect conductor regime, when the diffusivity ter
in Eqs.~33!–~35! can be ignored, the solution forW can be
obtained in a similar manner to the previous energy spect
analysis; namely, by reducing Eq.~35! to a heat equation via
a logarithmic change of variables and passing into a mov
frame of reference. The solution therefore is

W5W0t21/2e23Vt/4k1/2e23(ln k/q)2/4Vt, ~38!

where W0 is a constant that can be found from the initi
conditions. We see thatW develops ak1/2 scaling range
which is cut off at low and highk by exponentially propa-
gating fronts. Within this scaling range,W decays exponen
tially in time.

Given W, one can also findS by representing it asS5V
1cW and choosing the constantc such that the equation fo
V is closed. This givesc53/7 and

S5t21/2k1/2e23(ln k/q)2/4VtS V0e21Vt/41
3

7
W0e23Vt/4D ,

~39!

where V0 is another constant that can be found from t
initial conditions. Fort@1/V, the second term in the paren
theses should be neglected, and we have the following s
tion for the mean turbulence polarization:

P5W/S5
W0

V0
e26Vt. ~40!

In the perfect conductor regime we see that the mean po
ization tends to a value that is independent ofk and decays
exponentially in time. This means that all Fourier modes
the magnetic field eventually become plane polarized. N
that such turbulence is very far from the Gaussian state
which the mean polarization is finite~that is, elliptic and
circular polarized modes are present!.

It is also easy to obtain solutions toW for the diffusive
regime. Indeed, following the example of the energy sp
trum we make use of the substitutions

W5e23Vt/4k1/2f~k/kd2
!, ~41!

V5e21Vt/4k1/2f~k/kd2
! ~42!

to transform the governing equations forW andV into a form
similar to Eq.~27!. In each case we can solve the equati
for f using KLT’s and find that for timest@(ln q)2

W.W0k1/2t23/2e23Vt/4K0~k/kd2
!, ~43!
1-5
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V.V0k1/2t23/2e21Vt/4K0~k/kd2
!. ~44!

Correspondingly,S has the solution

S.k1/2t23/2FV0e21Vt/41
3

7
W0e23Vt/4GK0~k/kd2

!, ~45!

while importantly we find that the normalized polarizatio
P5W/S behaves identically in both the diffusive and perfe
conductor regimes.

Therefore, in the diffusive regimeW continues to decreas
in time with the same exponential rate as in the perfect c
ductor case and has the samet23/2 prefactor as the energ
spectrum. Thus, by the time the diffusive regime is achie
W can be essentially put equal to zero. The fact that
polarization becomes plane has quite a simple physical
planation. Indeed, a magnetic field wave packet of arbitr
polarization will be strongly distorted by stretching, th
stretching being strongest along the direction of the do
nant eigenvector of the Lagrangian deformation matrix~cor-
responding to the greatest Lyapunov exponent!. Such a
stretching will make any initial ‘‘spiral’’ structure flat at larg
times, with the dominant field component lying in a pla
passing through the eigenvector stretching and wave ve
directions.9

Another measure of intermittency in turbulence is the fl
ness, which can be defined ink space asF5S/E2. For large
times, in the perfect conductor regime,

F;t1/2e11Vt/4k3/2. ~46!

We see that the flatness grows both in time and ink, which
indicates the presence of small-scale intermittency. This
termittency can be attributed to the presence of cohe
structures ink space such as high aspect ratio elliptical
gions containing a nonzero magnetic field.

In the diffusive regime, in contrast to the polarization, t
behavior of the flatness is modified, and at large times
finds

F.k3/2t3/2e11Vt/4
K0~k/kd2

!

@K0~k/kd1
!#2

. ~47!

For smallk, we again have a region ofk3/2 scaling but now
with a logarithmic correction arising from the MacDona
functions. For largek, below the spectral cutoff, the add
tional MacDonald functions act to heighten the flatness. T
is, the introduction of a finite diffusivity actually increase
the small-scale intermittency~due to the exponential decay
high k caused by the diffusion!. In the next section we will
investigate the correlators of all orders.

9Of course, the incompressibility ofB(k) ensures that it is per
pendicular tok.
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VII. LARGE-TIME BEHAVIOR
OF HIGHER CORRELATORS

The observation in the last section that there is a domin
field component allows us to predict that for large tim
uBu4'uB2u2 in each realization, that is,Zll'Zab . There-
fore, the propertyZll5Zab , if valid initially, should be pre-
served by the equation forZ. Indeed, let us differentiate Eq
~23! twice with respect tol and subtract it from the sam
equation differentiated with respect toa and b. This gives
the following closed equation for the combinationw5Zll

2Zab :

ẇ5
V

3
@k2wkk22kDwk14D 2w116~Dw1w!

13~]ll2]ab!$~l224ab!w%#22kk2~Dw12w!.

~48!

We see that ifw[0 at t50, then it will remain identically
zero for all times. Thus, we can consider a class of~stable!
solutions of Eq.~23!, corresponding to large-time asympto
ics of the general solution, such thatZll5Zab . Assuming
this equality in Eq.~23! and puttingh50, we have

Ż5
V

3
@k2Zkk1~22l]l14!kZk14~l]l!2Z#22kk2l]lZ.

~49!

Let us consider a solution to this equation that is forma
represented as a series inl ~for example, via a Taylor series!:

Z511 (
n51

`
ln

n!
C (n)~k,t !. ~50!

Here, the functionC (n) is the correlator of order 2n. We
have omitted the lower index inC (n) here as the correlator
corresponding to different lower indices are identical in th
case. Substituting Eq.~50! into Eq.~49!, we have the follow-
ing equation for these correlators:

Ċ (n)5
V

3
@k2Ckk

(n)1~22n14!kCk
(n)14n2C (n)#

22kk2nC (n). ~51!

Note that forn51 this equation agrees with the Kazants
equation for the energy spectrum~25!. Moreover, by the sub-
stitution

C (n)5e(n21/2)(n13/2)Vtkn23/2f~k/kdn
,t !, ~52!

one can reduce Eq.~51! to an equation forf, similar to Eq.
~27!, that is, independent ofn. We can therefore immediatel
write down the general solution for the correlators at a
order n. In particular, in the perfect conductor regime 1/V
!t!(ln q)2 we have

C (n)5const3~n!t21/2e(n21/2)(n13/2)Vte23(ln k/q)2/4Vtkn23/2,

~53!
1-6



th

t
er

ic
th

b
ic
d

b
a

us

p

a-

n

th

tic
F
-

ls
th
t i

ted
For
ith
can
ith
te
ld

y
s
e is
ids

m.

dy-
ave
nsi-
ta-
in
ed
n-

ace.
ed
g-
ck-
the

ave
ain
ld
g-

ri-
t-
t in
ted
Fig.
ite
es

t its
the

ll-
ela-
of

s
orr-

s of

th ve

FOURIER SPACE INTERMITTENCY OF THE SMALL- . . . PHYSICAL REVIEW E 68, 026311 ~2003!
and in the diffusive regimet@(ln q)2

C (n)5const3~n!t23/2e(n21/2)(n13/2)Vtkn23/2K0~k/kdn
!.

~54!

We see that the main effect of the dissipation on all
moments~including the energy spectrum! is that the prefac-
tor changes fromt21/2→t23/2 ~but without a change in the
exponential growth rate!; further, theK0(k/kdn

) form factor

corresponds to a logarithmic-correction atk!1 and an ex-
ponential cutoff at largerk.10 It is this exponential cutoff tha
causes the exponential growth of the mean magnetic en
@5# and the higherx-space moments of the magnetic field@3#
to change. Indeed, simply integratingC (n) over k with a
cutoff at k5kdn

~and ignoring the prefactor and logarithm
corrections!, one recovers the Kazantsev growth rate of
magnetic energy in the dissipative regime@5#. Such an ex-
planation was previously given in@1#.

VIII. PHYSICAL INTERPRETATION OF THE SCALINGS

Let us analyze the physical origins of the scalings o
tained in the previous section, as this can give us an ind
tion as to whether the same scalings should be expecte
more general strain statistics.

Let us consider the expression~26! for the nth-order cor-
relator and rewrite it in the form C(n)exp@(2n2

12n)Vt#knP(k,t), whereP(k,t) is a universal function. The
physical meaning of various terms in this expression can
easily analyzed. It follows from the central limit theorem th
the large-time statistics of the Lyapunov exponents is Ga
ian with a dispersionD(t);At. It follows from time reversal
invariance that the average values of the Lyapunov ex
nents arel̄,0,2l̄. Hence, in the large-time limit,B(t)
;exp(lt), whereFt(l);exp@2(l2l̄)2/2Dt21#, Ft(l) be-
ing the probability distribution function. Therefore, the st
tistics of the magnetic field is log-normal and̂B2n&
;exp@(2l̄n212Dn)t#. For the statistics chosen in the prese
paper l̄5D5V ~which is natural becauseV is the only
dimensional parameter characterizing random strain!. Substi-
tuting these values into the last expression for^B2n&, we
restore the correctn dependence of the exponential grow
rate ofC (n). Note that terms of ordern2 in the growth rate
are due to the Gaussian nature of the fluctuations ofl around
l̄, while the terms of ordern are due to the fact thatl̄Þ0. It
is interesting that the magnetic field has log-normal statis
in both the perfect conductor and the dissipative regimes.
the coordinate space moments ofB, persistence of the log
normality was emphasized in@15#, although theeln2t depen-
dence was established earlier in@3#. An equivalent result for
the random matrices can be traced back to@16# ~see also@4#!.

Thek dependence of the magnetic field correlators is a
very important because it gives us information about
dominant structures in wave number space. Suppose tha

10Note that the higher the order of the correlator, the earlier
spectral cutoff.
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tially the magnetic turbulence is isotropic and concentra
in a ball centered at the origin in wave number space.
each realization such a ball will stretch into an ellipsoid w
one large, one short, and one neutral dimension. One
visualize this ellipsoid as an elongated flat cactus leaf w
thorns aligned in the direction of the magnetic field. No
that in this picture one component of the magnetic fie
~transverse to the cactus leaf! is dominant; this is captured b
the fact that the polarizationW introduced in this paper tend
to zero at large times. Another consequence of this pictur
that the wave number space will be covered by the ellipso
more and more sparsely at largek; this implies large inter-
mittent fluctuations of the magnetic field Fourier transfor
These fluctuations can be quantified by the flatnessF, which
was shown in Eq.~46! to grow ask3/2, a clear indication of
the small-scale intermittency.

To investigate the Kraichnan-Kazantsev model based
namo problem further, a set of numerical experiments h
been performed to investigate among other things, the se
tivity of these analytical results to changes in the strain s
tistics. The details of this investigation can be found
@13,17#. To help visualize the cactus leaf structures describ
above, we will briefly include some snapshots of the co
figuration of a wave packet ensemble in wave number sp
As above, each wave packet is initially randomly distribut
on a unit sphere ink space with a randomly orientated ma
netic field that lies in a plane perpendicular to the wave pa
et’s wave vector, tangent to the sphere. Figure 1 shows
real magnetic fields of a set of 500 wave packets that h
been subjected to two different realizations of the str
matrix.11 In the left-hand figure it is clear the magnetic fie
in this realization is far from being plane polarized, the ma
netic vectors still being predominantly random in their o
entation at this given point in time. In contrast, in the righ
hand figure, which has also been taken at the same poin
time, we see that the ellipsoid has become very elonga
and the magnetic field appears plane polarized. Further,
2 shows the same two strain realizations but with a fin
diffusivity. The right-hand figure in particular demonstrat
why, in the diffusive regime, an ellipsoid will coverk space
more sparsely due to the decay of the magnetic field a
tips. This is the reason why spectral flatness increases in
diffusive regime.

IX. CONCLUSION

In this paper we introduced a description of the sma
scale magnetic turbulence in terms of the one-point corr
tors of the Fourier amplitudes. From the classic work
@5–7# to more recent analyses~see, for example,@2# and
references therein!, the only correlator of this kind that ha
been studied is the energy spectrum. The higher order c
elators have been considered only in coordinate space@3,4#.
In this paper, we have considered the Fourier correlator

e 11The imaginary magnetic fields are qualitatively similar and ha
therefore not been included.
1-7



bers are

NAZARENKO, WEST, AND ZABORONSKI PHYSICAL REVIEW E68, 026311 ~2003!
FIG. 1. The magnetic field of 500 wave packets andk50. The figures show the particles’ positions ink space atVt52.16 and their
corresponding real magnetic fields. The left and right figures correspond to different realizations of the strain matrix. The wave num
measured in units of 1/L.
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all orders and shown that they contain important additio
information about the turbulence, which is unavailable fro
a similar analysis of one-point or two-point coordinate spa
correlators. In particular, the fourth-order Fourier correlat
carry information about the mean polarization of the ma
netic field modes. We showed that this polarization becom
planar for the Kraichnan-Kazantsev model. Thek scaling of
the higher correlators allows us to determine the structure
Fourier space responsible for the intermittency, which for
Kraichnan-Kazantsev dynamo turns out to be elongated
lipsoids centered at the origin. The time scaling of the hig
correlators allows one to conclude that the magnetic field
log-normal statistics, although the same information is c
tained, and was established before, in analysis of the coo
nate space correlators@3,4,15#.

Finally, we would like to discuss an interesting connecti
02631
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between this work and the recent work of Schekochihinet al.
@8,15#; in particular, the connection between the statistics
the magnetic field curvature studied by Schekochihinet al.
and the magnetic polarization measure introduced in
present paper. Schekochihinet al. found that the curvature o
the magnetic field decreases, corresponding to folded
strongly stretched structures. This agrees with our results
the Fourier modes of the magnetic field tend to a state
plane polarization. However, the polarization gives more
formation than the curvature statistics. Indeed, zero curva
allows any structure that is constant along the magnetic fi
in particular, a set of magnetic filaments parallel to ea
other or a set of layered sheets, such that the magnetic fie
constant on each sheet but its direction may change a
trarily when passing from one layer to another. On the ot
hand, the wave number scalings obtained in this paper, E
sponds
in units of
FIG. 2. The magnetic field of 500 wave packets in a numerical simulation withk50.005. The figures show the particles’ positions ink
space atVt52.16 and their corresponding real magnetic fields for two different realizations of the strain matrix. The left figure corre
to the same strain field as the left-hand graph of Fig. 1, and similarly for the right-hand graphs. The wave numbers are measured
1/L.
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~53! and ~54!, indicate that the magnetic field structures a
layers in coordinate space and this rules out any filamen
structures. Further, our results about the plane polariza
inhibit any ‘‘twists’’ of the magnetic field between layers
i.e., the magnetic field direction stays the same~or reverses!
when passing from one layer to another. In fact, the prese
of one neutral direction in the Lagrangian deformations te
us that these layers have a finite width in one direction
thus look like ribbons, with the magnetic field directed alo
these ribbons.

APPENDIX

Our aim here is to derive a closed equation for the gen
ating functionZ ~21!, starting with Eq.~17!. The last term in
this equation is the easiest one:

22kk2^@luB~k!u21aB2~k!1bB̄2~k!#E&522kk2DZ,

~A1!

whereD is the differential operator defined in Eq.~20!. The
correlators containing a factor ofs i j can be found using
Gaussian integration by parts. In particular,

^s i j E&5V K dE

ds i j
L 5

V

2
@l^~Gm,i j B̄m1Ḡm,i j Bm!E&

12a^Gm,i j BmE&12b^Ḡm,i j B̄mE&#, ~A2!

where we have used the definition~18!. Here, Gm,i j is a
response function,

Gm,i j 5
dBm

ds i j
. ~A3!

Differentiating Eq.~10! with respect tos i j and using the
statistical whiteness of the strain tensor, we get

Gm,i j 5Fki] j2
d i j

d
~11kl] l !GBm1dmiBj . ~A4!

In what follows we will make use of the isotropy of th
turbulence, in particular, expressions of the type

^~B̄iBj1B̄jBi !E&5
2

d21
^uBu2E&S d i j 2

kikj

k2 D , ~A5!

^BiBjE&5
1

d21
^B2E&S d i j 2

kikj

k2 D , ~A6!

^B̄i B̄jE&5
1

d21
^B̄2E&S d i j 2

kikj

k2 D . ~A7!

Substituting Eq.~A4! into Eq. ~A2! and using the above
isotropy relations, we have
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^s i j E&5
V

2 S ki] j2
d i j

d
kl] l DZ2

V

d21 S kikj

k2
2

d i j

d DDZ,

~A8!

whereD is the differential operator defined in Eq.~20!. This
allows us to find the first term on the right-hand side of E
~17!:

ki] j^s i j E&5
V

2 Fd21

d
k2Zkk

1
1

d
~22D1d221!kZk22DZG . ~A9!

Similarly, the other three terms on the right-hand side of E
~17! can be obtained via Gaussian integration by parts,
use of the response function~A4!, and the isotropy condition
After some lengthy but straightforward algebra, one obta

l^sml~B̄mBl1B̄lBm!E&5lVF S d2
2

dDZl12S 12
1

dDDZl

1l~Zab2Zll!2
1

d
ki] iZlG

~A10!

and

2a^smlBmBlE&5aVF S d2
2

dDZa12S 12
1

dDDZa22bZab

12bZll2
1

d
ki] iZaG . ~A11!

The fourth term can be obtained from Eq.~A11! by inter-
changinga with b andB with B̄:

2b^smlB̄mB̄lE&5bVF S d2
2

dDZb12S 12
1

dDDZb22aZab

12aZll2
1

d
ki] iZbG . ~A12!

Using the expressions~A9!, ~A10!, ~A11!, ~A12!, and~A1!,
we obtain the final equation

Ż5
V

2 F S 12
1

dD k2Zkk1
1

d
~24D1d221!kZk1~2d26!DZ

14S 12
1

dDD 2Z12~l224ab!~Zab2Zll!G
22kk2DZ. ~A13!
1-9
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