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Fourier space intermittency of the small-scale turbulent dynamo
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The small-scale turbulent dynamo in the high Prandtl number regime is described in terms of the one-point
Fourier space correlators. The second-order correlator of this kind is the energy spectrum and it has been
previously studied in detail. We examine the higher ofdepace correlators, which contain important infor-
mation about the phases of the magnetic wave packets and about the dominant structures of the magnetic
turbulence which cause intermittency. In particular, the fourth-order correlators contain information about the
mean-square phase difference between any two components of the magnetic field in a plane transverse to the
wave vector. This can be viewed as a measure of the magnetic field’s polarization. Examining this quantity, the
magnetic field is shown to become plane polarized in the Kazantsev-Kraichnan model at large times, corre-
sponding to a strong deviation from Gaussianity. We derive a closed equation for the generating function of the
Fourier correlators and find the large-time asymptotic solutions of these correlators at all orders. The time
scaling of these solutions implies that the magnetic field has log-normal statistics, whereas the wave number
scaling indicates that the field is dominated by intermittent fluctuations atkiigh
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[. INTRODUCTION on the second-order moment, corresponding to the energy
spectrum. It was realized, however, that the Fourier space
In some astrophysical applications, such as the interstellaand coordinate space equations have a similar struffjre
medium and protogalactic plasmas, the kinematic viscosity iRecent studies of the turbulence intermitterfoy both the
greater than the magnetic field diffusivity by the factot0 passive scalar and dynamo problermave focused on coor-
to 107?[1,2]. In these situations, there is a vast scaling rangalinate space moments of second order or higher. This ap-
where the magnetic field has a smaller characteristic lengthroach was motivated by a feeling that this description is
scale than the velocity field. The dynamo process of the stomore natural and can give more information thankispace
chastic stretching and amplification of the magnetic field carmomentg 3,4,8. As a result, the onlk-space correlator that
be studied in this case in terms of the statistics of LagrangiaRas been seriously studied to date is the energy spectrum,
deformationg3,4]. It can be pictured as a collection of mag- and there is no theory describing the higher Fourier space
netic field wave packets, each moving along a fluid particlecorrelators. _ .
path and being distorted by the local straiSuch a regime In the present paper, we turn our attention back to Fourier
of smooth velocity fields is similar to the Batchelor’s regime SPace and consider the one-point moments of the magnetic
found in the related problem of passive scalar advectionf.!eld’_s Fourler_transform.Although the problem under inves-
Batchelor’s regime has a long history of study; some of thé}ganon _here is the small-scale turbulent dyngmo, we would
more recent advances can be found, for exampld2jd] I|_ke to give several reasons why the desc_rlptlon of the Fou-
(and references thergimA common further simplification of fi€r space moments is important and why it should be devel-
the problem is to assume that the local strain matrix is £Ped in a broader turbulence context. _ _
Gaussian white noise process; this is commonly known as () The presence of singular structures in turbulence is
the Kazantsev-Kraichnan modg5,6]. However, this as- known to affect the scallng. of the structure funqtlons, the
sumption is not always necessary, and some results haReSt-known examples of this being tigeand multifractal
been shown to be universal for a broader class of stochast[Rodels[9]. However, some coherent structures are singular
flows [3]. in Fourier space rather than_ in co_ordl_nate space, an_d there-
The first analyses of the dynamo problem were based ifore can be detected by an investigation of the Fourier mo-

Fourier spacd5—7], with particular emphasis being placed Mments. A simple example of structures that are singular in
Fourier spacdand regular in coordinate spacs a sea of

vortex filaments in two-dimensiondPD) turbulence. The

1The difference in the values of these transport coefficients is duéayered pattern of the_ VOI"[ICQS in coordinate space corre-
to the multicomponent nature of plasrtgectrons, ions, and neu- SPONdS to a 1D curve in Fourier space.
trals). The fact that the charged particles are “attached” to the mag- (i) To date, the only Fourier moment that has been stud-
netic fields by the Larmor rotation also means there are significanied in detail is the second-order moment that describes the
differences in the values of these coefficients along and across the
magnetic field. Such anisotropy has been ignored in most of the

literature on the subjedincluding this present papebut its role in 3The Fourier transform should be taken over a local box, which is
dynamo systems deserves future study. large enough to fit many layers of filaments, but is smaller than the

2The second and higher derivatives of the velocity field can bdarge-scale vortices in this case. This will be discussed in the next
ignored in this case. section.
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distribution of the turbulent energy over wave numbers.where f(k)=(1/Ld)Hle[sin(Lk|)]/k| is the Fourier trans-
However, there exist other Fourier moments that have a cledorm of the filter function andd is the number of space
physical meaning and describe important properties of thelimensions. Here, the appearance of the fundtisndue to
turbulence. One of these objects is related to the fourth-orderanslational invariance, as a consequence of which multi-
moments and has the physical meaning of the mean turbyoint correlation functions in real space depend only on the
lence polarization. It will be introduced and studied in thisrelative coordinates of the points. We see that any two-point
paper. correlator is fully determined by the one-point correlators
(i) The phases of the Fourier modes can be dealt with
directly, and therefore the validity of the random phase as- I

yine e igdns i (K)
: - R TR R FRI PR n
sumption can be examinéd.

(iv) Finally, in some cases a Fourier space analysis is the =(Bi,(K)Bi(k)---B; (k)Bj (—k)
only way to have a treatable problem due to the introduction
of nonlocalities, for example, via pressure or wave disper- ><B]-2(—k)« ‘ 'Bjn(_k)>- ©)

sion. Note that the dynamo and passive scalar systems do not ] ] )
fit into this class of problems. However, the methods devel.'ll'hIS S|mp!e observauon means we can avoid Iengthy deriva-
oped in the present paper will be applied to the nonlocafions dealing with two-point objects directly, and instead can

Navier-Stokes equatiGriwhich involves a pressure tejrim  0btain results from the one-point correlators which are them-
our next papef10]. selves far easier to deal with. Turbulence isotropy and the

divergence-free condition further narrow the class of pos-
sible one-poin{and two-point correlator tensors we need to

Il. ONE-POINT AND TWO-POINT CORRELATORS . . .
consider(see, for exampld,11]), which give

OF FOURIER AMPLITUDES

To simplify calculations, we will use the Fourier trans- Ly g intigaigs (K
forms performed over a finite box of a size much greater than
the typical length scale of the magnetic turbulence, but much _ E ®"(K)D, Dy ---D
less than the scale of the advecting velocity field. The center pars © 11278 s 'n-1ln
of each finite box is not fixed. The box center coordinate
dependence of the Fourier transforms is a useful measure wfhere
the slow variability of the large-scale magnetic turbulence. In
this paper we make each box move in unison with a fluid kik;
particle, and thus any coordinate dependence is replaced by a Dij=di;— ? )
time dependence along a given fluid trajectory.
Let us consider the general two-point correlator of theang the summation is over the set of all possible permuta-
Fourier transformed magnetic field components tions (1.,15),(15,04), .. ..(h_1,!,) oOf the indicesi and |
from the left-hand side of Eq4). For each permutation, the
(Biy(ku)Bi,(ky)- - -Bj (k1)Bj, (kz)Bj,(k2) - - - By (k2)), index s is equal to the number of paifé1 parentheseshat
@ consist only ofi’s,® for example, {;,i3) or (ig,i,).” One can
whereiy iy, ... ip andji.is, . .. i, take the values 1, 2, see that any correlator of ordenZan be expressed in terms

and 3 corresponding to the three components of the magnetfl N=max(s)+1=int(n/2)+1 independent functions

N . ;
field, andn is an arbitrary natural number. Here, the angular®s(K). There is only one such function for the second-order

brackets(- - -) denote averaging over the random velocity correlators, two functions for the fourth and sixth orders, and
field. Let us assume that the turbulence is quasihomogdiree functions at the eighth and tenth orders. =

neous. That is, the correlatgB;(x,)B;j(x,)) (and similay Instead of®¢(k), we can choose another set of indepen-
depends orx;+X, only as slowly as the advecting strain dent functions, in particular the following set of correlators:
field. On the other hand, such correlators decay with N (2n-4s) 2128

—X, at distances much less than the box sikze & this case W=([B(K)| [B(K)*). (6)

4

<Bi1(k1)Bi2(kl)' --B; (k1)Bj (k2)Bj (ko) - -Bj (k2)) These correlators are linear combinationsdef(k)’s; for
example, at the fourth order we have

=(Bi,(kp)Bi,(Kp) - -B; (ky)B; (—ky)

XBj,(—ki)- - Bj (—ky)) f(kitks), )

PP =d(d-1)®P+(d—1)d?,
VP=2(d—1)®P+(d—1)20?.

“This is important for nonlinear systems but not so for the system
we consider in the present paper, where the phases trivially remain®There is obviously going to be the same number of pairs that

random if they are random initially. consist only ofj’s.
SSuch an equation is the basis of rapid distortion theory, which "The order in such pairs is unimportant, e.d,,,(3) and (3,i;)
will be developed for the case of a stochastic strain. denote the same object.
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Below, we will derive a technique that allows us to deal with 1
the fundamental set of correlata(®). (Uij(t)ffm(o)):Q( ik ji — a5ij5k|) a(t). (13

IIl. THE MODEL However, one must be aware that this is not the only way to

Let us start with the equation for the magnetic field satisfy the incompressibility and isotropy conditions; for ex-
B(x,t) ample,[3,4,12 have chosen

&tB‘i‘(uV)B:(BV)U‘i‘KAB, (7) <0'|](t)0'k|(0)>:Q[(d+1)5”(6”_(5”5“(_5”5k|]5(t)

(14)
whereu is the velocity field, which we assume has a much
slower spatial variation than the magnetic fifldand« is ~ More generally, there is an infinite one-parameter family of
the magnetic diffusivitydetermined by the fluid conductiv- possible strains. The strain matrices that are Gaussian and
ity). We will make use of the previously discussed finite boxwhite in time correspond to the Kazantsev-Kraichnan model,
Fourier transforms. Each box has sides of lerigtithich is  a natural starting point for an analytical analysis because of
chosen to lie between the length scales associatedBaditid  its simplicity. However, it should be noted that some results
u, namely,Lg andL,. The box Fourier transform is defined remain universal in the case of other smooth velocity fields
as found in a much wider class of statistical modgs4,19. In

our future work we will investigate the behavior of the Fou-

L ' rier space correlators in the case of more general statistics.
B(k,x,t):f B(r,t)ek <1 dr, ®) P g
box
) ) ) ) IV. GENERATING FUNCTION
wherex is the coordinate of the box center. Applying this

Fourier transform to Eq(7), we have(with accuracy up to ~ Let us consider the following generating function:
the first order of the scale separation parametelg/L,,
<1) Z(N, @, B,k) = (eMB)IZ+ B+ BBZ(K)y (15)
A A _ A A 2R . . .
9Bm+ UiViBn=07jkidjBm+ omiBi — kk“Bpy, (9 where the overbar denotes the complex conjugation. This

) ) ) function allows one to obtain any of the fundamental one-
whereo;; =Vju; is the strain matrix and the operatdisand  point correlatorg6) via differentiation with respect ta, «,
d; correspond to derivatives with respectxpandk;, re-  5pq B:
spectively. In considering a fluid path determined )
A:U, and AthUS notlng. thatoi.j (X,t)—)O’ij(X(t),t) and \P2:<|B(k)|(2n74s)|BZ(k)|ZS>:[5§\2n74s)dzazz])\:azﬂzo.
B(k,x,t)—B(k,x(t),t), this equation becoms (16)

_ 2
9Bm=0ijKid{Bm+t omiBi— xk*Bp. (10) Differentiating Eq.(15) with respect to time and using the

) ) dynamical equatiori10), we have
It should also be noted that the straif} , taken along a fluid

path enters this equation only as a given function of time. To. _ _

complete the model one has to specify this dependence of = Kidj(ijE) + M(om(BnB|+B|Bpn)E) +2a(omBmB|E)
postulate the strain statistics. In what follows we choose the - —

strain matrix to be Gaussian such that +2B(mBmBIE) —2kk*([N[B(K)|*+ aB*(Kk)

A +BB(K)]E), (17)
UijZQ(Aij_F‘sij , (11)
where
whereA;; is a matrix with statistically independent elements A —
that are white in time, E = MBI+ aB (k) + 4Bk (18)
(Aij(DAG(0)) = &ij d 8(1). (12)  To find the correlators on the right-hand side of Ety), one

needs to make use of the Gaussianity of the strain matix
This choice of strain matrix ensures incompressibility andand perform a Gaussian integration by parts. We then use the
statistical isotropy. Indeed, whiteness of the strain field to find the response functiba

functional derivative oB, with respect tasy;). Finally, one

can use the statistical isotropy of the strain, so that the final

8jereatfter, we will drop the caret dbecause only Fourier com- equation involves onlk= k| and no angular dependence of

ponents will be considered. Also, we will not mention explicitly the the wave vector. This derivation is discussed in more detail
dependence on the fluid path and simply witeB(k,t). in the Appendix. Here, we just write the final result:
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) 1), 1 ) Kulsrud [2] presented the complete solution of Eg5) ob-
== (1— a)k Zyct §(—4D+d"~1kZ+(2d=6)DZ  tained by the use of Kontorovich-Lebedev transforms
(KLTs). Note that this integral transform approach has an

advantage over the Kazantsev’'s eigenvalue analysis in that it
+411- H)DZZ"' 2(\N*=4aB)(Zap—2Zy\) allows us to obtain not only the growth exponents, but also

the power-law prefactors, of the large-time asymptotic solu-
—2kk?*DZ, (19 tions.

o _ ) As they will be of use later in this presentation, let us
where thek, a, B, and\ subscripts inZ denote differentia-  priefly review the previous results for the energy spectrum

tion with respect t, «, B, and\, respectively, and before we discuss the higher order moments. Using the sub-
D=\dy+ad,+ Bg. (20 Stitution(2]

Actually, one can reduce the number of independent vari- E=eS2 124 (Kk/ky 1), kg = /i, (26)

ables in this equation by taking into account tHadepends 1 " 6nk

on « andB only in the combinatiom= a 3. The easiest way

to see this is to consider a Taylor series expansiod fopm ~ ON€ can reduce E¢25) to

Eqg. (15); any term that containa and 3 in a different com- 3

bination will be zero because of the quasihomogeneity of the —(p,t)= P2¢pp+ Pdp— P2, (27)
turbulence. Thus, we can write Q

wherepzk/kdl. At scales much greater than the dissipative

one, p<1, there is a perfect conductor regime for tirne
<(Inq)? (whereq<1 is the mean wave number of the initial
condition. Thus, in this regime the last term in E@5) can

be neglected. By changing to logarithmic coordinates and a
5 moving frame of reference one can transform this equation
—2kk“DZ, (21) into a heat equation. Fdae>1/Q), the solution of this is just
the Green’s function, which givd4,2,13,14

,_ 0
2

1 2 1 2
1- 5 |KZct §(—4D+d°~1)kZ+(2d - 6)DZ

+4

1
1- a)D22+ 2(0\2=An)(Z,+ nZ,,—Z\))

where
D=\oy+27d,. (22 ¢=constxt~ 17~ 3(nkaTant (28)

In what follows, we will restrict our consideration to the 3D Where the constant is fixed by the initial condition. This so-
case (I=3), when the equation fa reduces to lution describes a spectrum with an expanding’? scaling
range. Att~ (In g)? the front of this scaling range reaches the
dissipative scales. To solve E®5) in this case, we note that
the right-hand side of this equation is just the modified

5 Bessel operator, and by using the KLT one immediately ob-
X (Zn+ nznn_z)\)\)]_z’(k Dz. (23) tainS[Z]

y Q 2 2 2
Z= 5 [KZct (4= 2D)KZ+4D?Z+3(N~47)

V. ENERGY SPECTRUM #(p,t)=constx f dsssinl‘(rrs)Kis(p)KiS(q)e‘Szt,
0

Let us now consider the energy spectrum of the magnetic
. (29
turbulence, given by the second-order correlator
1 o where K, is a MacDonald function of imaginary order.
E(k)=To=(B(K)[%)=[AZ]\~ 0. (24 Again, this solution is given by the Green’s function only

Differentiating Eq.(23) with respect tox and taking the because the condition thas1/Q) is obviously satisfied if

result at\= =0, we have g<<1l. For timet>(In q)2, the function e‘szt is strongly
peaked as=0, and the integration of Eq29) gives
)
E= g(szkk+ 2KE,+4E)— 2kkE. (25 $=constt~ 32K y(p). (30)

This equation for the evolution of the energy spectrum wag2n€ should note that, although tkg(p) shape is pggdlcted
first obtained by Kazantsés] and by Kraichnan and Naga- DY Kazantsev's eigenmode analyf2s5,13,14, thet™ > fac-
rajan[6]. Kazantsev analyzed an eigenvalue problem assocfor can be obtained only by solving the full initial value
ated with this equation, which allowed him to obtain the Problem. Forp<1, Kq(p)~—Inp, which means that at
growth exponents of the total magnetic energy. Numericallylarge times scales far larger than the dissipative one are af-
the energy spectrum was studied by Kulsrud and Andersoffcted by diffusion via the logarithmic correction

[1], who gave a detailed description of tkespace evolution _

of this spectrum. Recently, Schekochihin, Boldyrev, and E(k)~k llzm(kdllk)' (31)
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The energy evolution gives an important, but incomplete pictudes. Therefore, a better measure of the mean polarization
ture, of the dynamo process. In particular, it does not capturevould be a normalizedlV, for example,

the existence of small-scale intermittency and does not allow

us to predict the type of coherent structures dominating the P=W/S. (37
turbulence at large times. To deal with these issues one has
study higher order correlators. Higher one-point correlator
in coordinate space were studied[®] and used to predict
the shape of the dominant structures. Below, we proceed
study the highek-space correlators. In particular, this will

. " . . lators.
lead to the discovery of an additional quantity of mterest,Corre . e
corresponding to the mean polarization of the magnetic tur- In the perfect conductgr regime, when the diffusivity term
bulence. in Egs. (33)—(35) can be ignored, the solution fa¥ can be

obtained in a similar manner to the previous energy spectrum
analysis; namely, by reducing E@5) to a heat equation via

a logarithmic change of variables and passing into a moving
frame of reference. The solution therefore is

sEg)efined in this way, the mean turbulence polarization is an
example of an important physical quantity that can be ob-
t15;1ined from the one-point Fourier correlators, and that is un-
available from thgone-point or two-pointcoordinate space

VI. FOURTH-ORDER CORRELATORS, TURBULENCE
POLARIZATION, AND FLATNESS

There are two independent fourth-order correlators, )
W= Wot—llze—smmkl/ze—s(m ki/q)2/40t (39)
S(kt) =V =(B)|) =[Z\\]x= -0, (328 _ o
where W, is a constant that can be found from the initial
T(k,H) =@ =(|B%K)|?)=[Z,] - ,~0. (32D  conditions. We see thatv develops ak'? scaling range
which is cut off at low and highk by exponentially propa-
Differentiating Eq.(23) twice with respect to\ and taking gating fronts. Within this scaling rang®#y decays exponen-

the result ain = »=0, we have tially in time.
Q Given W, one can also find by representing it aS=V
S= — (K2S,.+ 10S+ 6T) — 4 k2S. 33 +9W and choqsmg the constantuch that the equation for
3 (KS )~ 4« B3 Vs closed. This gives=23/7 and

Now, differentiating Eq(23) with respect top and taking the

3
_ 1 —1/2,1/2,— 3(In ki) 2140t 210t/4 —-30t/4
result ath=7=0, we get S=t~ VY2 3(nka) Ve + 7Woe

(39

)
2 _ 2
T 3 (KTt 4T+ 125) = 4ck7T. (34) where V, is another constant that can be found from the

initial conditions. Fort>1/(), the second term in the paren-

Equations(33) and (34) make up a complete system f8  theses should be neglected, and we have the following solu-
andT and can be solved exactly in the general case. Obsergyn for the mean turbulence polarization:

that there is a closed equation faf=S—T,

W
P=W/S=—e 6%, (40)

0 , v
W= 2 (K*Wige— 2W) — kW, (35) 0

In the perfect conductor regime we see that the mean polar-

Before solving this equation, let us examine the physicalzation tends to a value that is independenkaind decays
meaning ofW by writing it as exponentially in time. This means that all Fourier modes of
the magnetic field eventually become plane polarized. Note
that such turbulence is very far from the Gaussian state in
which the mean polarization is finitéhat is, elliptic and
5 circular polarized modes are present
— 4 (|B1|?[B, |2 Sir( i — ) =0 (36) It is also easy to obtain solutions W for the diffusive

“ j [ T PI= regime. Indeed, following the example of the energy spec-

trum we make use of the substitutions

3
W=4]E¢I ([Im(B;B))1?)

where Im denotes the imaginary part agfand ¢, are the
phases of the componenis and B, respectively. We see
therefore thaV contains information not only about the am-
plitudes but also about the phases of the Fourier modes. In V=g (kikg,) (42
particular, W=0 corresponds to the case where all Fourier

components of the magnetic field are plane polarizedV|f to transform the governing equations ¥#andV into a form
#0 then other polarization&ircular, elliptio are present. Similar to Eq.(27). In each case we can solve the equation
This is the case, for example, for a Gaussian field where onf®r ¢ using KLT's and find that for times> (In )

finds W=E<“/2>0. On the other hand, the smallness of the o

phase differences iV can be overpowered by large ampli- W= Wok! ™32 38K o (k/ kdz)’ (43

W=e 32 (Kkiky,), (41)
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V:V0k1/2t—3/2e219t/4K0(k/kd ). (44) VIl. LARGE-TIME BEHAVIOR
2 OF HIGHER CORRELATORS

CorrespondinglyS has the solution The observation in the last section that there is a dominant
field component allows us to predict that for large times
3 |B|*~|B?|? in each realization, that isZ),~Z,s. There-
S~ k1/2t3/2[ Ve2 AL “Woe 34K ((k/ky ), (45) fore, the property,, =2z, if valid initially, should be pre-
7 2 served by the equation fa. Indeed, let us differentiate Eq.
(23) twice with respect tov and subtract it from the same
while importantly we find that the normalized polarization equation differentiated with respect toand 8. This gives
P=W/S behaves identically in both the diffusive and perfectthe following closed equation for the combination=Z,,
conductor regimes. —Z,.p"
Therefore, in the diffusive regimé continues to decrease
in time with the same exponegtial rate as in the perfect con- W= g[kZWkk— 2kDw, + 4D 2w+ 16(Dw+w)
ductor case and has the samé’? prefactor as the energy 3
spectrum. Thus, by the time the diffusive regime is achieved
W can be essentially put equal to zero. The fact that the +3(00— dapl{ (N~ 4aB)w}] —21k*(Dw+2w).
polarization becomes plane has quite a simple physical ex- (48
planation. Indeed, a magnetic field wave packet of arbitrary
polarization will be strongly distorted by stretching, the We see that iiv=0 att=0, then it will remain identically
stretching being strongest along the direction of the domizero for all times. Thus, we can consider a clasgstéble
nant eigenvector of the Lagrangian deformation maigix-  solutions of Eq(23), corresponding to large-time asymptot-
responding to the greatest Lyapunov expoheSuch a ics of the general solution, such thaf,=Z,5. Assuming
stretching will make any initial “spiral” structure flat at large this equality in Eq(23) and puttingn=0, we have
times, with the dominant field component lying in a plane

passing through the eigenvector stretching and wave vectoy _ g[kzzkk-i-(—27\8A+4)kzk+4()\¢9)\)22]—2Kk2)\07)\z.

directions’

Another measure of intermittency in turbulence is the flat- (49
ness, which can be defined kirspace ag = S/E2. For large ) ) ] ] )
times, in the perfect conductor regime, Let us consider a solution to this equation that is formally

represented as a series\ir{ffor example, via a Taylor serigs

FNtI/Zelmt/4k3/2. (46) © N
Z=1+, mqf(“>(|<,t). (50)
I I =1 M

We see that the flatness grows both in time and, iwhich !

indicates the presence of small-scale intermittency. This ingjere, the function¥ (™ is the correlator of order 12 We
termittency can be attributed to the presence Of Cohererﬁave 0m|tted the |0wer index nir(n) here as the COfre'atorS
structures ink space such as high aspect ratio elliptical re-corresponding to different lower indices are identical in this

gions containing a nonzero magnetic field. o case. Substituting E450) into Eq.(49), we have the follow-
In the diffusive regime, in contrast to the polarization, thejng equation for these correlators:

behavior of the flatness is modified, and at large times one

finds . Q
qf<">=§[k2qf<k?3+(— 2n+4)kW (M + 4n2p(M]

F ~ k31231211004 Kolkkg,) @7 —2kk2np ™, (51)

[Ko(k/ka))]* L . .
L Note that forn=1 this equation agrees with the Kazantsev

equation for the energy spectru2b). Moreover, by the sub-
For smallk, we again have a region &f? scaling but now stitution
with a logarithmic correction arising from the MacDonald
functions. For largek, below the spectral cutoff, the addi- W =N VAN 32g (kg t), (52)
tional MacDonald functions act to heighten the flatness. That
is, the introduction of a finite diffusivity actually increases one can reduce E@51) to an equation fokp, similar to Eq.
the small-scale intermittendgue to the exponential decay at (27), that is, independent af. We can therefore immediately
high k caused by the diffusignin the next section we will write down the general solution for the correlators at any
investigate the correlators of all orders. ordern. In particular, in the perfect conductor regimeQ1/
<t<(Ing)? we have

2
%0f course, the incompressibility (k) ensures that it is per- W (W= constx (n)t~ 2N~ 120 +32)0tg=3(Ink/a)*/40tn =372
pendicular tok. (53
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and in the diffusive regimé>(In g)? tially the magnetic turbulence is isotropic and concentrated
in a ball centered at the origin in wave number space. For
n) — —3/24(n—1/2) (n+ 3/2)Qty,n—3/2]
WM =consix (n)t~ (N HATIDANTI o (K/ky ). each realization such a ball will stretch into an ellipsoid with

(54  one large, one short, and one neutral dimension. One can

We see that the main effect of the dissipation on all theV|suallze this ellipsoid as an elongated flat cactus leaf with

moments(including the energy spectryns that the prefac- :EEO:”.S ilr'lgneq ;n the direction of tkle ??r?netlc fuel?. '\fI.Otlz
tor changes fromt~ Y2t =32 (but without a change in the ‘at [N tiS picture one component Of the magnetc hie

exponential growth raje further, theKy(k/kq ) form factor (transverse to the caqtus_lé&&f_domlnant; j[h's IS captured by
. nds t logarithmi rrection "l nd an ex the fact that the polarizatiow/ introduced in this paper tends
corresponds 1o a loga 10 c-correctio andan ex- -4, ero at large times. Another consequence of this picture is
ponential cutoff at largek.™ It is this exponential cutoff that : o
: . that the wave number space will be covered by the ellipsoids
causes the exponential growth of the mean magnetic ener

[5] and the highex-space moments of the magnetic fig&] %ore and more sparsely at larggethis implies large inter-
to change. Indeed, simply integrating™ over k with a mittent fluctuations of the magnetic field Fourier transform.

cutoff atk=kdn (and ignoring the prefactor and logarithmic These fluctuations can be quantified by the flatriesshich

, was shown in Eq(46) to grow ask®?, a clear indication of
correction$, one recovers the Kazantsev growth rate of th

) i the dissivali . Such €he small-scale intermittency.
magnetic energy in the dissipative regiffid. Such an ex- To investigate the Kraichnan-Kazantsev model based dy-
planation was previously given ii].

namo problem further, a set of numerical experiments have
been performed to investigate among other things, the sensi-
VIIIl. PHYSICAL INTERPRETATION OF THE SCALINGS tivity of these analytical results to changes in the strain sta-
plistics. The details of this investigation can be found in

6{_13,11 To help visualize the cactus leaf structures described

tion as to whether the same scalings should be expected f§ ove, we will briefly include some snapshots of the con-
more general strain statistics. iguration of a wave packet ensemble in wave number space.

Let us consider the expressi26) for the nth-order cor- As above, each wave packet is initially randomly distributed
relator and rewrite it in the form C(n)exg(2n? ona u_nit spher.e m.{ space with a rangomly orientated mag-
+2mOQtKP(k), whereP(kt) is a universal function. The netic field that lies in a plane perpendicular to the wave pack-

physical meaning of various terms in this expression can b§tSI vr\:]avenV?ictgr,léangfent tot thfesz%h\(lavre\./ Flgurlt(a tl stEO\tNﬁ t\f/le
easily analyzed. It follows from the central limit theorem that ea agb_e f det sto ads_?f 0 X I'a ?_pac efsth a ¢ ave
the large-time statistics of the Lyapunov exponents is Gauséj—een spbjected o two-dilierent reaiizations of the strain

S ) ) : matrix!! In the left-hand figure it is clear the magnetic field
ian with a dispersio (t) ~ yt. It follows from time reversal in this realization is far from being plane polarized, the mag-

invariance that the average values of th? Lyapunov expoqqsic vectors still being predominantly random in their ori-
nents areh,0,—\. Hence, in the large-time limitB(t)  entation at this given point in time. In contrast, in the right-
~exp(t), where 7 (\)~exd —(A\—\)%2At 1], F(\) be-  hand figure, which has also been taken at the same point in
ing the probability distribution function. Therefore, the sta-time, we see that the ellipsoid has become very elongated
tistics of the magnetic field is log-normal an¢B2") and the magnetic field appears plane polarized. Further, Fig.
Nexq(zfnZJrzAn)t]_ For the statistics chosen in the present2 shows the same two strain realizations but with a finite
papern=A=Q (which is natural becaus® is the only d|ffus.|wty. Th.e nght-han'd figure in par'tlcul'ar demonstrates
dimensional parameter characterizing random str&iobsti- ~ WhY: in the diffusive regime, an ellipsoid will covérspace
tuting these values into the last expression 8", we  MOré sparsely due to the decay of the magnetic field at its
restore the correat dependence of the exponential growth t|ps. Thls is 'Fhe reason why spectral flatness increases in the
rate of W™, Note that terms of orden? in the growth rate  diffusive regime.
are due to the Gaussian nature of the fluctuations afound
\, while the terms of ordem are due to the fact that#0. It
is interesting that the magnetic field has log-normal statistics
in both the perfect conductor and the diSSipative regimes. For In this paper we introduced a description of the small-
the coordinate space moments@fpersistence of the log-  scale magnetic turbulence in terms of the one-point correla-
normality was emphasized [15], although thes*""" depen-  tors of the Fourier amplitudes. From the classic work of
dence was established earlief{B]. An equivalent result for [5-7] to more recent analysesee, for example[2] and
the random matrices can be traced backif (see alsd4]). references thereinthe only correlator of this kind that has
Thek dependence of the magnetic field correlators is alsdeen studied is the energy spectrum. The higher order corr-
very important because it gives us information about theelators have been considered only in coordinate spzdé
dominant structures in wave number space. Suppose that iflia this paper, we have considered the Fourier correlators of

Let us analyze the physical origins of the scalings o
tained in the previous section, as this can give us an indic

IX. CONCLUSION

ONote that the higher the order of the correlator, the earlier the 'The imaginary magnetic fields are qualitatively similar and have
spectral cutoff. therefore not been included.
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FIG. 1. The magnetic field of 500 wave packets and0. The figures show the particles’ positionskirspace af)t=2.16 and their
corresponding real magnetic fields. The left and right figures correspond to different realizations of the strain matrix. The wave numbers are
measured in units of L/

all orders and shown that they contain important additionabetween this work and the recent work of Schekochétial.
information about the turbulence, which is unavailable from[8,15]; in particular, the connection between the statistics of
a similar analysis of one-point or two-point coordinate spaceéhe magnetic field curvature studied by Schekochitiral.
correlators. In particular, the fourth-order Fourier correlatorsand the magnetic polarization measure introduced in this
carry information about the mean polarization of the mag-present paper. Schekochitehal. found that the curvature of
netic field modes. We showed that this polarization becomethe magnetic field decreases, corresponding to folded and
planar for the Kraichnan-Kazantsev model. Tkhscaling of  strongly stretched structures. This agrees with our results that
the higher correlators allows us to determine the structures ithe Fourier modes of the magnetic field tend to a state of
Fourier space responsible for the intermittency, which for theplane polarization. However, the polarization gives more in-
Kraichnan-Kazantsev dynamo turns out to be elongated eformation than the curvature statistics. Indeed, zero curvature
lipsoids centered at the origin. The time scaling of the higheallows any structure that is constant along the magnetic field,
correlators allows one to conclude that the magnetic field hag particular, a set of magnetic filaments parallel to each
log-normal statistics, although the same information is conether or a set of layered sheets, such that the magnetic field is
tained, and was established before, in analysis of the coordeonstant on each sheet but its direction may change arbi-
nate space correlatof8,4,15. trarily when passing from one layer to another. On the other
Finally, we would like to discuss an interesting connectionhand, the wave number scalings obtained in this paper, Egs.

_‘; ’ \/.\J} 100

FIG. 2. The magnetic field of 500 wave packets in a numerical simulation a%tB.005. The figures show the particles’ positionkin
space af)t=2.16 and their corresponding real magnetic fields for two different realizations of the strain matrix. The left figure corresponds
to the same strain field as the left-hand graph of Fig. 1, and similarly for the right-hand graphs. The wave numbers are measured in units of
Y/
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(53) and(54), indicate that the magnetic field structures are ) 5 0 (kk &

layers in coordinate space and this rules out any filamentary (oy;E)= (ki&j— #k@)Z— E(L_J) DZ,
structures. Further, our results about the plane polarization k

inhibit any “twists” of the magnetic field between layers, (A8)
i.e., the magnetic field direction stays the saimereverses

when passing from one layer to another. In fact, the presenoshereD is the differential operator defined in EQO). This

of one neutral direction in the Lagrangian deformations tellsallows us to find the first term on the right-hand side of Eq.
us that these layers have a finite width in one direction and17):
thus look like ribbons, with the magnetic field directed along
these ribbons.

APPENDIX

1
Our aim here is to derive a closed equation for the gener- +a(—2D+ d?—1)kz,—2DZ|. (A9)
ating functionZ (21), starting with Eq(17). The last term in
this equation is the easiest one:
Similarly, the other three terms on the right-hand side of Eq.
—2Kk2<[)\|B(k)|2+aBZ(k)+ﬂ§2(k)]E>= —2kk?DZ, (17) can be obtained via_Gaussian intggration by parts, the
(A1) use of the response functigA4), and the isotropy condition.
After some lengthy but straightforward algebra, one obtains

whereD is the differential operator defined in EQ0). The
correlators containing a factor af;; can be found using

Gaussian integration by parts. In particular, )\<Uml(§mBl+§le)E>:)\Q[(d_ g) Z)\+2(1— %) DZ,
SE N 1
(o BE)=Qf 5 —)= [M(Fm.,B + T i Bm) E) +MZap= 200~ gkidiZy
ij
+2a(l 1 BrE) + 28T BuE)],  (A2) (AL0)

where we have used the definitiqa8). Here, I'y,j; is a and
response function,

2 1
B 2a(0mBmBIE)= aQ (d— “lz,+ 2(1— —) DZ,—2pZ 0
(T” 1
Differentiating Eq.(10) with respect tos;; and using the “BZWH“”*Z&} (AlD)

statistical whiteness of the strain tensor, we get

The fourth term can be obtained from E@11) by inter-
changinga with 8 andB with B:

O:i
Fm,ij: kiﬁj_#(l‘f'k“ﬂ) Bm+5miBj- (A4)

_ 2 1
In what follows we will make use of the isotropy of the ZB<UmIBmBIE>:BQ[(d_a Zpt 2(1—5) DZg—2aZ,p

turbulence, in particular, expressions of the type

1
— 2
<(BiBj+BjBi)E>_m<|B| E) 5ij_F ., (A5)
Using the expression®\9), (A10), (All), (A12), and(Al),
1 L we obtain the final equation
(BiB,E)= 5~ (B E)( ';), (AB)
Q 1
L K zzg[( —a)k Zict g ( 4D+d’—1)kZ,+(2d—6)DZ
— —, ik
(BiBJ—E>—d_—1(B E)| 8 —?>. (A7) )
+4(1—a):/)zz+2(>\2—4aﬁ)(zaﬁ—zn)
Substituting Eq.(A4) into Eqg. (A2) and using the above
isotropy relations, we have —2kk?DZ. (A13)
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